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Abstract
Theoretical calculations of the shape of an absorption edge in a warm dense simple material
such Al are described. The calculations include the XAFS (x-ray absorption fine structure)
features above the edge. The shape of these modulations relates to the atomic spatial
distribution and to the electronic density of states (DOS) in the continuum. The underlying
warm dense plasma model is based on a density-functional neutral pseudoatom approach which
gives the radial distribution function (RDF) and the electron density around one specific site.
Combined with a full multiple-scattering (MS) approach giving the final free wavefunction in a
photoionization process, the model is used to predict the shape of photoabsorption K edges over
a range of compression ratios from 0.5 to 3 and temperatures from 0.1 to 10 eV. It is found that
XAFS structures are intense enough to be observable for densities of the order of (and above)
the solid density and that dynamic or static absorption spectroscopy measurements could
provide interesting information on the warm dense matter regime.

1. Introduction

The physical properties of warm dense matter are still poorly
known in comparison with the solid state and with the
hot plasma state. The reason is both experimental and
theoretical. The very transient state of this regime makes
laboratory experiments very difficult and the subsequent lack
of reliable experimental data does not give firm foundations
to the theoretical models of this state of matter, which is
characterized by strong correlations. Experimental studies on
the equation of state, reflectivity, electrical conductivity and
x-ray scattering [1–6] already give interesting data points to
be compared with theory [7–10]. However, there is a need
for measurements that involve more directly the structural
properties of this strongly coupled regime.

In this paper, we explore the possibility of using the
structure of a photoabsorption edge to get information on the
electronic and structural properties such as the pair correlation
function. Previous experimental measurements [11, 12] or
theoretical calculations [13] of the K edge in dense compressed
material have already been reported. A recent study of the
K edge in dense but significantly heated Al must also be
quoted [14]. These studies focused mainly on the position
and the width of the edge, i.e. in an energy zone close to the

onset of absorption. Here, by calculating the whole absorption
edge, which includes specific features well known in solid-
state physics such as the so-called x-ray absorption near-edge
spectroscopy (XANES) structures above the edge, we show
how very careful measurements of this threshold could provide
other data points for a better understanding of warm dense
matter. To our knowledge, this is the first systematic study of
XANES spectra in the warm dense regime.

Present calculations are based on a multiple-scattering
approach to the photoionization process, combined with a
density-functional-theory (DFT) approach to the dense plasma
state. This last method has already proven to be very fruitful for
calculating various physical properties of dense plasmas and
of liquid metals. Such an approach considers the correlation
sphere around a central ion as the physically relevant volume
(instead of the ion-sphere or Wigner–Seitz volume). In the
calculations, this correlation sphere radius is only large enough
to insure that the ion distribution function is unity on the edge
of the calculation sphere. Starting from the temperature T
and from the density ρ, the DFT approach consists mainly
in solving self-consistently two sets of equations. The first
set models the electron density distribution in the potential of
the central ion by solving effective one-particle Schrödinger
equations. The second set of equations used for the ion
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distribution has the form of the hypernetted-chain (HNC)
equations with an effective ion–ion pair interaction built within
the neutral pseudoatom (NPA) model. The first set of equations
provides the atomic structure of the average atom in the
plasma as well as various electronic quantities. The second
one gives the ion–ion radial distribution function g(r). Such
an approach, where the full finite-temperature response of
the ions and of the electrons is treated in a self-consistent
manner, goes well beyond the one-component-plasma (OCP)
approach, where the electrons are merely a static neutralizing
background. A general conclusion of the calculations is
that authorizing the electrons to respond gives to the whole
system the behavior of a lower density OCP. It is worth
noting that such an approach is clearly distinct from the heavy
quantum molecular dynamics (QMD) simulations [15–19],
where the electrons are treated by the Kohn–Sham theory while
a convenient number of ions are made to evolve in time.

From this model of dense matter, the subsequent step of
the calculations consists in evaluating the photoionization cross
section of a bound electron (here on K-shell) for a significative
number of energy points around the edge. This step involves a
careful determination of the final free wavefunction. This has
been achieved in a full multiple-scattering (MS) approach from
selected sets of ion configurations that sample the previously
obtained radial distribution function.

Section 2 presents the theoretical background of full
multiple-scattering calculations. In section 3, we outline
the finite-temperature DFT approach to dense matter with
an application to structural properties of warm dense
aluminum. Then, special attention is paid to the questions
of potential construction and threshold position that arise in
multiple-scattering photoionization calculations. In section 4,
theoretical calculations of K-edge spectra will be given and
discussed. Section 5 is a conclusion of this work.

2. Full multiple-scattering K-edge photoionization
cross section

The starting point of our calculations is a convenient
description of the photoionization process occurring in a dense
material. In this work, we calculate the photoionization
cross section in the framework of the multiple-scattering
theory (MST) in a muffin-tin (MT) potential. In its usual
form, the MST is used to compute the final wavefunction
of the photoelectron in the ionization process. A crucial
aspect here lies in the necessary ‘muffin-tinization’ of the
potential experienced by the photoelectron. The construction
of this potential from ‘real’ configurations of neighboring
atoms as well as the limitations introduced by the MT
approximation are discussed later in the text (section 3.4).
The photoabsorption is governed by the dipole matrix element
between a strongly localized initial state i (the core electron)
and a final state f describing the delocalized photoelectron.
More precisely, the general expression for the configuration
averaged photoabsorption cross section of an electron being in
the subshell �i (of occupation ni ) reads

σo(E) = ni

4�i + 2

∑

mi

∑

� f ,m f

σi f (E) (1)

where i, f refers two Slater determinants that differ in one
orbital, a bound orbital ψ�i mi in state i and a free wavefunction
ψ� f m f ,k in state f with wavenumber k. Then, one has

σi f (E) = a E
∑

q=0,±1

|〈ψ�i mi |r (1)q |ψ� f m f ,k〉|2
(

1 − fF

(
X

kT

))

(2)

with r (1)q =
√

4π
3 r Y1q(r̂) (Y1q is a usual spherical harmonic).

One defines ε = E − Eo as the kinetic energy of the
photoelectron, Eo being the onset of absorption. If the photon
energy E is in Rydberg, the cross section in cm2 and the free
wavefunction normalized such that the asymptotic amplitude
is ε1/4 (k = √

ε), the numerical coefficient a has the value
a = 8.56×10−19. fF is the Fermi occupation factor depending
on X so that 1 − fF(X/kT ) is the vacancy available for the
photoelectron. If ε (> 0) is the energy of the photoelectron
relative to the (constant) value of the muffin-tin interstitial
potential (that we define as the onset of absorption), X is the
energy of the photoelectron relative to the chemical potential
μ. Note that for K-shell photoabsorption one has ni = 2,
�i = mi = 0, hence � f = 1, m f = 0,±1.

The final state ψ� f m f ,k depends on the nature and the
position of the atoms neighboring the absorbing atom and we
have to deal with the difficulty of calculating a photoelectron
wavefunction by representing the potential as a cluster of
spherical potentials centered on the atomic sites. Here, we used
the multiple-scattering theory (MST) to treat the interaction
of the photoelectron with the set of neighboring scatterers.
Essentials of this theory can be found elsewhere [20, 21]. In
this work, we used a form of the MST that is also called the
scattered wave method in real space. A very clear presentation
of this approach can be found in [22]. Another form of
the theory, the Green function method, also exists, and the
interested reader will find practical details in [23, 24]. In
the scattered wave method, the final state wavefunction is
computed as being the sum of two parts: an outgoing wave plus
a sum of scattered waves. We consider a real finite cluster of
N atoms (real means here that one considers a specific spatial
configuration of atoms). The absorbing atom is supposed to
be at the center of the cluster. Inside each atomic sphere the
potential is purely radial and the Schrödinger equation can
be solved numerically for each wave (�′,m ′) so that the free
wavefunction reads

ψ� f m f ,k(r) =
∑

�′m′
B�′m′(� f m f )R�′,k(r)Y�′m′(r̂) (3)

where R�′,k(r) is the numerical solution of the radial
Schrödinger equation for the wavenumber k, Y�′m′(r̂) is
a spherical harmonic and the B�′m′(� f m f ) are a set of
coefficients necessary to ensure the continuity of ψ� f m f ,k(r)
and its first derivative at the frontier of the atomic sphere.
In the interstitial region, the potential is supposed to be
constant (within the muffin-tin approximation, see below) and
we consider that each function ψ� f m f ,k(r) can be expressed as

ψ� f m f ,k(r) = j� f (kr)Y� f m f (r̂)

− i
∑

j

∑

�′m′
B( j)
�′m′(� f m f )h

+
�′ (r j )Y�′m′(r̂ j) (4)
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where j� is a spherical Bessel function and the h+
�′ (r j ) are

Hankel functions centered on atomic site j . In this equation
j runs over the number of atoms in the cluster while �′ runs
in principle from zero to infinity. Coefficients B( j)

�′m′(� f m f )

are determined by imposing continuity conditions for the wave
ψ� f m f ,k(r) and its first derivative at the border of the atomic
spheres. In practice, the summations are truncated to a given
�max, whose value is determined by the rule �max ≈ rMTk,
rMT being the radius of the atomic spheres in the muffin-tin
potential. In our calculation, we found that �max = 5 was
sufficient for having converged results for photoelectrons of a
few tens of eV. Imposing the continuity conditions leads to a
N(�max + 1)2 × N(�max + 1)2 complex linear system for the
B( j)
�′m′(�m) [22]. Of course, such a system must be built and

solved for each value of wavenumber k.
Until now, the calculations ignore both the finite core–

hole duration as well as the finite mean free path of the
photoelectron in the material. Both effects are taken into
account by convolving σo by a Lorentzian and writing for the
actual cross section

σ(E) = 1

2π

∫ +∞

−∞
�(E ′)

(E − E ′)2 + �(E ′)2/4
σo(E

′) dE ′ (5)

where �(E) = �hole + �el(E). For K-shell ionized
aluminum, the Auger width is �hole = 0.6 eV [25]. The
second contribution �el(E) = h̄

λel(ε)

√
2ε/m is related to the

photoelectron mean free path λel(ε). ε = E − Eo is the kinetic
energy of the photoelectron (Eo being the onset of absorption).
Starting from the electron self-energy in an electron gas,
careful estimations of λel(ε) have been published by Penn [26].
It is important to note here that the time dependence of
the formation and relaxation of the absorption edge profile
is not considered in these calculations. Approaches for
evaluating the importance of these time-dependent effects can
be mentioned [27, 28]. However, K-edge absorption spectra in
dense materials do not seem very sensitive to these effects.

In the next section, we present the structural aspects
underlying our calculations of the photoionization cross
section, namely, the distribution of the neighboring atoms
around the photoionized atom and the construction of the
potential seen by the photoelectron.

3. Description of warm dense matter using the
Kohn–Sham equations

The DFT approach presented here is very close to the imple-
mentation point of view and thus rather phenomenological. For
a more rigorous presentation of the DFT equations in dense
plasmas, the interested reader will refer to [29]. The approach
makes use of the neutral pseudoatom (NPA) concept which
provides a natural separation between the ions and the elec-
trons. We will see how it takes place in standard calculations
of XANES spectra.

3.1. NPA pair interaction and structural property calculations

The neutral pseudoatom method consists in assuming that the
total electron density ρcluster(r) of an actual cluster of atoms

(ultimately a metal or a liquid metal) can be written as a sum
of localized electron densities that follow the ions in their
movement

ρcluster(r) =
∑

i

ρ
(1)
el (|r − Ri |) (6)

where Ri is the position of the ion site i and ρ
(1)
el is the

‘one site’ electron density. This superposition approximation
(common in condensed-matter physics) is consistent with the
binary character of the interatomic forces. Furthermore, one
separates core electrons from valence electrons, i.e.,

ρ
(1)
el (r) = ρc(r)+
ρ(r) (7)

where 
ρ(r) is the valence charge per atom. One has∫

ρ(r) dr = Z∗ and

∫
ρ
(1)
el (r), dr = Z . Z∗ is the

effective charge of the ions. Of course, these ‘atoms’ or
‘neutral pseudoatoms’ are not the same as the objects we
get if we take the cluster to pieces and put the right number
of valence electrons around each ion [30]. This is because
the electrons of the electron gas (in which the ions are
immersed) tend to distribute so as to form screening clouds
about each ion. The ‘one atom’ quantities ρc(r) and 
ρ(r) are
usually obtained from a specific DFT–Kohn–Sham calculation
through a pseudopotential w (section 3.2). For liquid metals,
discarding the ‘core’ electrons, a model pseudopotential can
also be used to obtain 
ρ(r) [31]. Whatever the method
we use, one can show, from a second order calculation of
the total energy of the system (ions + electrons), that the pair
potential reads φeff(r) = Z∗2

r + φps(r), where φps(r) is the
Fourier transform of the product 
ρ̃(q)w̃(q). Finally, the pair
potential reads

φeff(r) = Z∗2

r
+ 1

(2π)3

∫
e−iq·r
ρ̃(q)w̃(q) dq. (8)

From this pair interaction, and assuming that the ions
behave classically, one may invoke the classical theory of
liquids where the radial distribution function g(r) is obtained
from the following set of equations:

h(r) = g(r)− 1 = ni

∫
dr′c(r ′)h(r − r ′)+ c(r) (9)

g(r) = exp

[
−φeff

kT
+ h(r)− c(r)+ B(r)

]
. (10)

Equation (9) is the Ornstein–Zernicke equation while
equation (10) is the so-called hypernetted-chain (HNC) closure
relation. c(r) is the direct correlation function and ni is
the ion density. The strict HNC scheme corresponds to
B(r) = 0 where B(r) is the so-called Bridge function (the
sum of elementary graphs). If B(r) 	= 0 one speaks of
modified HNC (MHNC). Thus, the HNC treatment can be
improved by choosing a convenient bridge function [32], and
this is crucial for strongly correlated systems. A well known
method for calculating B(r) is based on the observation of the
following universality principle [32]: ‘The Bridge functions
constitute the same family of curves, irrespective of the
assumed pair potential’. Following this universality principle,
one can invoke a reference system having a well defined pair

3
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interaction and for which a parametrized radial distribution
g(r) is available (from many MD or MC simulations). The best
known system is the so-called hard-sphere (HS) system, whose
pair interaction is simply given by φeff(r) = ∞ for r < σ ;
φeff(r) = 0 for r > σ . Verlet and Weiss [33] have given a
good fit of the radial distribution gHS(r, η) as a function of the
packing fraction η = 1

6πniσ
3. An independent fit of the hard-

sphere bridge function BHS(r, η) is also available [34]. Having
chosen the hard-sphere reference system, the best choice of
the packing fraction η remains. The best a priori choice has
been proposed by Lado et al [35], showing that a minimization
of the (modified) HNC free energy of a system of particles
interacting through a given pair potential φeff leads to the
following condition for η:

∫
dr[g(r)− gHS(r, η)]dBHS(r, η)

dη
= 0. (11)

Equation (11) must be added to the set of equations (9)
and (10).

3.2. NPA pseudopotential

We give here some details about the method used for obtaining
the pseudopotential w̃(q) and the valence charge (per atom)
which are involved in the pair interaction determination
(equation (8)). As mentioned above, a possible method makes
use of a model pseudopotential. The linear response of an
electron gas to a weak pseudopotential reads


ρ̃(q) = πo(q)

ε(q)
w̃(q) (12)

in which πo(q) = − kF
π2 (

1
2 + 1−b2

4b log | 1+b
1−b |) is the RPA

polarizability (b = q/2kF), ε(q) = 1 − 4π
q2 [1 − G(q)]πo(q) is

the static dielectric function and kF is the Fermi wavevector.
G(q) is the local-field correction, allowing us to take into
account exchange–correlation effects (for a recent discussion
see [36]). A quite simple expression for this local-field
correction has been given by Taylor [37]: G(q) = q2

4k2
F
[1 +

0.1534
πkF

]. 
ρ̃(q) being obtained from w̃(q) (equation (12)), one
easily gets φeff from equation (8).

In order to get rid of any ‘ad hoc’ model pseudopotential,
we used in the present work the model of the ion in a
jellium vacancy [29, 38] that gives 
ρ̃(q), an effective
pseudopotential and finally the pair interaction. The SCF
valence charge per atom
ρSCF is obtained by writing the ‘one
site’ electron density as the difference (right term)

ρ
(1)
el (r) = ρc(r)+
ρSCF(r) = ρel(r)− ρv(r) (13)

where the electronic density ρel(r) has the (average-atom) form

ρel(r) =
∑

b

fF(εb)|φb|2 +
∑

�

∫ ∞

o
fF(ε�)|φ�,ε|2 dε (14)

in which the first sum runs over the bound orbitals (εb < 0)
while the second runs over the free orbitals (ε > V (Rc)).
Function fF is the usual Fermi occupation factor fF(ε) =

(1 + e(ε−μ)/kT )−1. One-electron orbitals φ are obtained by
solving the radial Schrödinger equation with the potential V

V (r) =
∫ Rc

o

ρel(r′)− n+(r′)
|r − r′| dr′ + Vxc[ρel] (15)

where
n+(r) = Zδ(r)+ Z∗ni�(r − rws) (16)

is the density of positive charge. Rc is here a correlation sphere
radius of the order of a few rws (the ion-sphere radius). An
independent calculation with the positive density of charge (the
spherical cavity alone)

n+(r) = Z∗ni�(r − rws), (17)

gives ρv(r). In equation (13) ρc(r) = ∑
b fF(εb)|φb(r)|2,

while in equations (16) and (17) � is the Heaviside function.
One considers now the pseudopotential w∗ giving 
ρSCF

in the linear response, i.e. 
ρ̃SCF(q) = πo(q)
ε(q) w̃

∗(q). In

practical calculations, the oscillations of 
ρSCF(r) into the
core region lead to too large components (for large q) of the
Fourier transform. Before performing the Fourier transform
of 
ρSCF(r), a preliminary smoothing inside the core is
necessary. Such a smoothing is achieved by taking 
ρ(r) =
A − Br 2 for r � rc, otherwise 
ρ(r) = 
ρSCF(r). A, B are
chosen so that 
ρ(r) and its derivative are continuous at r =
rc. Then, 
ρ(r) must be normalized so that

∫

ρ(r) dr = Z∗

is satisfied. Note that the results are not sensitive to the choice
of rc as long as one takes rc of the order of unity (in au) for Al.

It is worth noting that the average-atom description of
the electron density comes from a finite-temperature DFT
description of the problem. For the determination of Z∗, the
most reasonable choice consists in defining a neutrality radius
Rn such as

∫ Rn

o ρel dr = Z . Effective charge Z∗ is thus simply

given by Z∗ = Z − ∫ Rn

o ρbound(r) dr, where ρbound is just the
first sum of the right part of equation (14). Also, the chemical
potentialμ is determined from the requirement of the neutrality
of the correlation sphere

∫ Rc

o
ρel(r) dr = 0. (18)

Last, the simple Kohn–Sham functional Vxc[ρel] = ( 3
π
ρel)

1/3

has been used throughout this work.

3.3. Structural results in warm dense Al

We applied the above principles to Al, for which proper
absorption experiments can be hoped for. More precisely, we
applied the above DFT model with an NPA pair interaction
(section 3.1) and the self-consistent determination of the
valence charge per atom 
ρSCF(r) that gives the effective
pseudopotential w (section 3.2). The quantities we extract
from the above dense matter model are the needed atomic
orbitals, i.e. the 1s orbital for K-shell calculations, the NPA
bound and valence densities (see equation (7)) and the radial
distribution function (RDF). We will see in the next part
(section 3.4) how these basic ingredients are used to build

4



J. Phys.: Condens. Matter 20 (2008) 195211 O Peyrusse

0 5 10

q (Å
-1

)

1

2

0

3
S 

(q
)

Figure 1. The static structure factor of liquid Al (ρ = 2.37 g cm−3,
T = 0.086 eV). Solid dots: x-ray diffraction data [35]. Squares:
QMD simulations [17]. Continuous line: present calculations.
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r (Å)

1

2

0

3

g(
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Figure 2. Radial distribution function of Al at
(ρ = 2.0 g cm−3, T = 0.086 eV). Squares: QMD simulations [16].
Continuous line: present calculations.

a photoionization profile. All the cases presented in this
study correspond to a density–temperature range where the
ionization Z∗ is non-ambiguous and equal to three. The
previous DFT model predicts such an established fact for
temperatures between 0.1 and 10 eV and compressions
between 0.5 and 3.0. Such a range is typical of the warm
dense regime and turns out to be accessible to experiments.
In our average-atom framework, this ionization means that the
occupation numbers of subshells 1s, 2s and 2p are respectively
2, 2 and 6, while the n = 3 electrons are in the continuum. This
favorable situation avoids the use of unphysical non-integer
bound occupation numbers in the subsequent photoionization
cross-section calculation. The cases where the n = 2 core
levels centered on different sites begin to overlap (for very
high densities) or where discrete n = 3 levels begin to exist
(in decompressed Al) are beyond the scope of our study.
Moreover, our implementation of the MS photoionization
theory that involves the preliminary construction of a muffin-
tin potential is likely to be questionable when we leave the
previously given range of density–temperature (section 4).

0 2 4 6 8 10 12 14 16 18 20

r / a
o

0

0.5

1

1.5

2

2.5

3

3.5

g 
(r

)

0.1 eV

0.5 eV

1 eV

5 eV

Figure 3. The temperature dependence of the ion–ion RDF of Al at
solid density (ρo) for a range from 0.1 to 5 eV. For all of these cases,
Z∗ = 3. a0 is the Bohr radius.

0 2 4 6 8 10 12 14 16 18 20

r / a
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1

1.5

2

2.5

3

3.5

g 
(r

) 
0.1 eV

0.5 eV

1 eV

5 eV

Figure 4. The temperature dependence of the ion–ion RDF of Al at
ρo/2 for a range from 0.1 to 5 eV. For all of these cases, Z∗ = 3.

Before applying the previously described warm dense
matter model to K-edge absorption profile calculations, we
tested it against available x-ray diffraction data [39] and QMD
simulation results [16, 17]. This concerns the static structure
factor S̃(q) = 1 + ni h̃(q) of liquid Al near the melting point
and also the radial distribution function (at a slightly lower
density). Results are plotted in figures 1 and 2. We note a
global agreement between x-ray values, QMD simulations and
the present NPA-HNC calculations.

In figure 3, we display the calculated radial distribution
function for slightly heated and solid density Al. The same
quantity is plotted for slightly decompressed Al (figure 4)
while various RDFs along the shock Hugoniot of Al are
displayed in figure 5. In this last case, compression and
temperature are connected via the equation of state [40]. These
connected values are reported in figure 5.

3.4. Muffin-tin potential from selected ionic configurations
and NPA charge densities

The absorber and the neighboring atoms define a cluster for
which we have to calculate the initial state and the whole set

5
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Figure 5. The ion–ion RDF of Al along the shock Hugoniot. The
corresponding couples (ρ, T ) are indicated in the box.

of final state wavefunctions (depending on the photoelectron
energy). A preliminary point in the application of the MST
is the building of the potential. As in standard calculations
of XANES spectra for solid-state materials we used the
‘muffin-tin potential’ approximation. In this approximation,
the potential is spherically averaged in the atomic regions
and volume averaged in the interatomic region. Standard
prescriptions for the construction of a muffin-tin potential
go back to Mattheiss’s work [41] concerning energy band
calculations in metals, and a clear explanation of its application
to XAFS spectra can be found in [42]. The essence of
this approximation is in the superposition of preliminary
calculated free neutral atom electron densities placed at some
definite spatial positions. In this work we go slightly beyond
this prescription by using two kinds of actual NPA (and
not free atom) electron densities: one specific density for
the neighboring Al3+ ions (embedded in a jellium vacancy)
and one specific density for the absorbing Al4+ ion (with
a 1s core hole). This NPA-based muffin-tin construction
of the potential is consistent with the dense matter model
discussed in the previous section and prevents us from using
free atom electron densities calculated with heuristic bound
electron configurations. It is worth noting that this is a fully
‘relaxed’ and ‘screened’ construction of the potential seen by
the photoelectron. To check the validity of this construction
for a fixed geometry, we calculated XANES K-edge spectra
of solid face-centered-cubic (fcc) aluminum for two different
size of clusters. The results are plotted in figure 6 (bottom)
and compared with available experimental data obtained on
a synchrotron [43] (top). The N = 43 result compares
quite well with the experimental result, thus indicating the
correctness of the NPA-based approach and of our full-MS
implementation. An important detail of these calculations
is the exchange–correlation potential used in the calculation
of the photoelectron wavefunction. To be consistent with
the structural calculations (section 3.2), we used here the
simple Kohn–Sham functional. More sophisticated functionals
that depend on the kinetic energy of the photoelectron exist.
In this case, the implementation of the exchange–correlation

Figure 6. Solid-state (cold) Al K-edge spectrum.
Top—experiment [43], bottom—calculation for two sizes of fcc
cluster. Calculated spectra do not take into account any experimental
broadening and ignore time-dependent screening effects in the
response of the core hole.

potential within the muffin-tin approximation deserves special
attention [44].

We shall now discuss the determination of the spatial
atomic positions from the above dense matter model
applied to (disordered) warm dense aluminum. Unlike
combined approaches based on MST and molecular dynamics
simulations (and applied to solid amorphous media) [45, 46],
the full DFT approach previously described gives only mean
quantities like the g(r) function. So, one must resort
to a procedure for determining the atomic positions in a
given cluster. In other words, one has to find the spatial
configurations that ‘sample’ the g(r) function. The way we
set up this arrangement for a cluster of N atoms is now
explained. We first consider the whole box of volume L3 such
that L3 = Na3, where a is the volume of the elementary cell
(ρa3 = 1). In this box, one can select random configurations
{(xi, yi , zi ), i = 1, N}, and for each N-atom configuration the
N(N −1)/2 interatomic distances Ri j can be obtained. Noting
that 4πr 2gtrial(r) dr is the probability of finding an atom
between r and r + dr , an histogram can be built from the set
{Ri j}, and the radial distribution function gtrial(r) be extracted.
This gtrial(r) can now be compared with the calculated g(r).
Here we have chosen to retain N-atom configurations such that

χ2 =
∑

i< j

|gtrial(Ri j)− g(Ri j)|2 (19)

is as small as possible. From a practical point of view, the
sampling of g(r) over a reasonable distance (a few oscillations)
with clusters having a moderate number of atoms may lead to
duplicating a cluster in the three spatial directions according to
the minimum image principle. Moreover, the random search
for the best N-atom configurations, i.e. minimizing the χ2, can
be improved by applying a standard minimization procedure
acting on the 3N coordinates of the cluster.
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Figure 7. Muffin-tin potential around the photoionizing atom. Vo is
the interstitial potential, μ is the chemical potential and εb is the
bound energy of an inner-shell electron. rMT is the muffin-tin radius.
At r = rMT, there is a small discontinuity inherent to the MT
construction of the potential.

An important quantity that remains to be defined is the
muffin-tin radius rMT, i.e. the radius attributed to each atom
prior to constructing the muffin-tin potential. This is a free
parameter whose determination is somewhat arbitrary. It is
admitted (at least for solid-state calculations) that a small
overlap of the spheres allows one to reduce the size of the
interstitial region and also to minimize the discontinuities
between the potential of the atomic spheres and the interstitial
potential Vo. In the same vein and, after a few trials, we
chose to attribute to rMT half the value of an interatomic
distance r corresponding to the maximum of the g(r) function.
However, in compressed matter, it seems necessary to consider
interatomic distances rather located in the ‘foot’ of the g(r)
function (0.15gmax). For all of the cases studied below in this
paper, these values warrant the obvious requirement on the
chemical potential μ > Vo in the construction of the muffin-tin
potential (see figure 7). This point is clarified in the following
paragraph.

3.5. Position of the threshold

In this paragraph, we address the difficult problem of the
exact position of the edge and not only its shape. We mean
here the localization in energy at the onset of absorption for
zero temperature. Such a problem is better visualized by
plotting the muffin-tin potential around the photo-absorbing
atom (figure 7). At T = 0, the absolute value of εb is the ‘true’
bound energy (relative to the Fermi level) of a 1s electron if
we look at a K edge. At this point, we must be aware that the
approach followed in the previous sections was in fact based
on a one-electron Kohn–Sham picture. Of course, the question
of the value of εb cannot be addressed correctly with such
a picture. This is truly a complicated multiparticle problem.
In a DFT framework, only differences of ‘ground energies’
can be involved between an initial state i and a final state
f . For the cases we consider in this paper, the initial state
is the configuration 1s22s22p6 + a thermally averaged set of
unbound configurations for the remaining electrons. In other
words, we have a 1s22s22p6 Al3+ ion imbedded into a jellium
having a mean electron density n̄ = Z∗ni with Z∗ = 3.

1540 1560 1580 1600 1620

Photon energy (eV)

0

0.1

C
ro

ss
 s

ec
tio

n 
(M

ba
rn

)

0.1 eV
0.5 eV
1 eV
1.5 eV

Figure 8. Temperature dependence of the Al XANES K-edge
spectrum at solid density. The numbers in the inset are the different
temperatures in eV.

Conversely, the final state has a 1s core hole, i.e. corresponds
to a 1s2s22p6 Al4+ ion imbedded into a jellium with Z∗ = 4.
The simplest way we address the calculation of εb at any T
(in the range where Z∗ = 3) is the Slater’s transition state
method [47]. In this context, we identify εb (see figure 7)
with the value εb = μ1/2 − ε

1/2
1s + 
o, where ε1/2

1s (< 0) is
the orbital energy of a 1s electron in the fictitious 1s1.52s22p6

ion imbedded into a jellium of charge Z∗ = 3.5 (μ1/2 is the
corresponding chemical potential). 
o is a corrective shift to
be adjusted. For Al, the value
o = 1.2 eV has been chosen in
order to reproduce the commonly accepted value of the K-edge
position at T = 0. We kept this value constant throughout the
present calculations. Finally, in the present muffin-tin picture
(see figure 7), we define the chemical potential as

μ = μeg(no, T )+ Vo (20)

where no and Vo are the mean interstitial electron density
and the mean interstitial potential, respectively. μeg is the
corresponding chemical potential for the uniform electron
gas. Equation (20) is the straightforward finite-temperature
generalization of the chemical potential proposed by Mustre
de Leon et al [48].

4. Calculated warm dense K edges and discussion

Following the procedure described in the previous paragraphs,
XANES spectra of the K edge in warm dense aluminum
have been calculated. For each case characterized by ρ,
T and its specific RDF function, 20 clusters of N atoms
have been built. The disordered geometrical structure (and
its associated muffin-tin potential) of each cluster has been
determined following the procedure of section 3. We chose
N = 13 as a significant value in a disordered medium (note
that the whole g(r) is sampled by using the minimum image
principle). For each cluster, a XANES spectrum has been
calculated using the full-MS formalism (section 2). Then, for
each case, an average over 20 spectra has been performed. All
the results are displayed in figures 8–10.
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Figure 9. Temperature dependence of the Al XANES K-edge
spectrum at ρo/2. The numbers in the inset are the different
temperatures in eV.
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Figure 10. The Al XANES K-edge spectrum along the shock
Hugoniot. The numbers in the insets are the different couples of
density (in the unit of the solid density ρo)–temperature (in eV).

Figure 8 shows the temperature dependence of the K-
edge spectrum at solid density ρ0. Figure 9 exhibits this
dependence for ρ0/2 while figure 10 shows the variation of the
K edge along the shock Hugoniot. A first general comment
is that the position of this edge (at the onset of absorption)
has a complex behavior because it depends both on the energy
of the core electron with respect to the chemical potential
and on the progressive spreading of the Fermi function as
the temperature increases. Any comparison with possible
experiments in the warm dense regime is thus not easy, for it
involves a criterion for the determination of the threshold. The
inflexion point on the left side of the spectrum is one of the
possible criteria but, at high temperature, it is very different
from the onset of absorption and this reflects the lack of a
true edge. Independently, the second structure in the K edge
(observed around 1590 eV at zero temperature, figure 6) is
not seen in the melted, disordered Al. More interesting is the
existence and the position of the main peak observed is these
spectra. In figure 8 this peak (indicated by an arrow) broadens
while T increases. In the decompressed material (figure 9) one
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. . .. .

Figure 11. Zoom of the normalized edge profile (σ/σmax) at the
onset of absorption. The horizontal line is the preassigned value
σ/σmax = 0.05 (supposed to be observable). Intersection of the
spectrum with the line indicates the shift relative to the position of
the normal (solid) position of the Al K edge (located on the right
axis). The numbers in the inset are the different couples of density
(in the unit of the solid density ρo)–temperature (in eV).

observes a reduction of this peak. In this case, for temperatures
greater than about 1 eV, the obtained value of μ relative to
Vo makes the muffin-tin approximation highly questionable
(and then no results are shown), but this peak is likely to
disappear. This progressive disappearance beyond a few eV
is also observed in the compressed material (figure 10). Also,
along the shock Hugoniot, it is worth noting a clear shifting
and broadening of the main peak with compression. At the
same time, and despite the non-existence of a true edge in the
high-temperature regime, it is possible to study the observable
position of the onset of absorption. The observable shift is
defined as that value of the photon energy where the absorption
coefficient (or the cross-section) scaled by the maximum value
in the edge profile, σ(E)/σmax, is a preassigned value (0.05 for
instance) [13]. In the compressed aluminum, examples of such
(red-) shifts are displayed in figure 11.

5. Conclusion

We have calculated the K-edge absorption of aluminum in the
warm dense regime. Our approach is essentially a three-step
procedure. The first step consists in using a DFT model of
dense matter that has proven to be fruitful at least for the
description of simple liquid metals and simple dense plasmas
as well. Such an approach gives only thermodynamic averaged
structural quantities like the radial distribution function g(r).
So the second step consists simply in extracting spatial
atomic configurations (for a finite number of atoms defining
a cluster) that are compatible with the previously calculated
g(r) function. In the third step, a muffin-tin potential is
built and a full multiple-scattering calculation is applied in
order to construct the XANES portion of the photoabsorption
spectrum. Such a spectrum is averaged over a significant
number of atomic configurations (or clusters). The warm dense
regime we chose (ρ varies between ρo/2 and 3ρo while T is
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between 0.1 and 10 eV) is likely to be studied in laboratory
experiments, and these calculations indicate the modifications
of the K-edge XANES spectra that can be expected. The
dense matter model we used contains many ingredients and
there is room for improvements. Furthermore, the K-edge
calculation has identified weaknesses such as the muffin-tin
approximation and the use of an approximate form of the
chemical potential based on the free electron gas model. This is
supposedly correct for simple metals and noble metals so one
may expect the same in the warm dense regime. A possible
improvement would be a more consistent determination of the
chemical potential [49]. But still, in the decompressed matter
at temperatures greater than about 1 eV, the MT approach
is probably highly questionable. However, our approach as
a whole has the advantages of being fast (compared with
QMD calculations) and of giving a clear physical insight into
the various involved phenomena. Future confrontations with
experiments (and QMD calculations) should help in improving
this kind of approach and this will improve our knowledge of
the warm dense state of matter.
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